
www.anl.gov

Using Containers on Theta
J. Taylor Childers
SIMULATION.DATA.LEARNING WORKSHOP

Argonne Leadership Computing Facility

Quick Introduction

2

Argonne Leadership Computing Facility

Quick Introduction

3

Both Require:
• Hardware
• Host Operating System
• Hypervisor or Engine
• System libraries
• Target Application

Argonne Leadership Computing Facility

Quick Introduction

4

Both Require:
• Hardware
• Host Operating System
• Hypervisor or Engine
• System libraries
• Target Application
Main Difference:
• VMs require entire internal

operating system
• VMs v ir tual ize system

hardware

Argonne Leadership Computing Facility

Quick Introduction

5

Containers use host kernel
making them lighter weight,
quicker to deploy.

Argonne Leadership Computing Facility

Quick Introduction

6

Containers use host kernel
making them lighter weight,
quicker to deploy.

IBM Performance Tests
“In general, Docker equals or exceeds KVM performance in every case we tested.
Our results show that both KVM and Docker introduce negligible overhead for
CPU and memory performance (except in extreme cases). For I/O intensive
workloads, both forms of virtualization should be used carefully.”

https://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

Argonne Leadership Computing Facility

Docker vs Singularity
• Docker and Singularity are both container

frameworks
• Both are easy to use and deploy
• Why not Docker on Theta?

• Applications run as root inside container
• Since containers can mount host folders,

container can mount local filesystem as root
with all the access privileges

• Perhaps OK if you are Google and have no
outside users running apps on your system

• This is not OK for DOE user facilities
• Singularity containers run as the user and

cannot escalate privileges
• Otherwise come with all the benefits of

Docker

7

Argonne Leadership Computing Facility

Singularity Usage on
Building Containers:
• Singularity containers should be built from base images
• Base images can be found on

• https://hub.docker.com/
• https://singularity-hub.org/

• Example build commands:

• This can be done on a Theta login node if you can use base images produced by
Docker or Singularity.

• There is a known bug in Singularity which causes user uploaded images to fail with
‘permission denied’ errors:

• This succeeds if you have ‘sudo’ rights, therefore…
8

http://singularity.lbl.gov/

thetalogin5:~> singularity build myubuntu.img docker://ubuntu
thetalogin5:~> singularity build myubuntu.img shub://singularityhub/ubuntu

thetalogin5:~> singularity build myubuntu.img docker://jtchilders/mpitest:latest

https://hub.docker.com/
https://singularity-hub.org/
docker://ubuntu
docker://jtchilders/mpitest:latest

Argonne Leadership Computing Facility

Overview of the Workflow in Six Easy Steps!
1.Install Singularity on machine with ‘sudo’ access
2.Create SingularityFile recipe
3.Run Build command with ‘sudo’
4.Copy to Theta
5.Create Cobalt submission script
6.‘qsub’ script

9

Container
pi

MPICH

Built on personal machine Container
pi

MPICH

Cray MPICH

Run on Theta

Argonne Leadership Computing Facility

Singularity Usage on Theta

Building containers from Scratch:
• Need a machine with Singularity

installed and ‘sudo’ rights
• Your laptop will work

• Create a Singularity recipe file

10

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /vagrant_data/pi.c /myapp/
 /vagrant_data/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

Argonne Leadership Computing Facility11

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

Similar to docker://centos

Source of base image

Argonne Leadership Computing Facility12

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

During the ‘setup’ phase,
the image does not yet exist
and is still on the host
filesystem at the path
SINGULARITY_ROOTFS
This creates app directory
at ‘/myapp’ in the image

Create a working directory
for my app

Argonne Leadership Computing Facility13

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

Left-hand side is host file
system path, Right-hand
side is image path

Copy files from into image

Argonne Leadership Computing Facility14

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

Commands to install my
image with the application.

I n s t a l l v i a ‘ y u m ’ a n y
packages need to build
application inside the
container.

Argonne Leadership Computing Facility15

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

Typically containers are
built to run one executable.

singularity run myapp.img

Specify the executable to
run with container is called

Argonne Leadership Computing Facility16

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

Specify the executable to
run with container is called

Commands to install my
image with the application.

Copy files from into image

Source of base image

Create a working directory
for my app

Argonne Leadership Computing Facility17

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

pi.c source is here: https://
www.alcf.anl.gov/user-guides/example-
program-and-makefile-bgq
It’s a straightforward MPI application that
calculates pi with MPI_REDUCE.

https://www.alcf.anl.gov/user-guides/example-program-and-makefile-bgq
https://www.alcf.anl.gov/user-guides/example-program-and-makefile-bgq
https://www.alcf.anl.gov/user-guides/example-program-and-makefile-bgq

Argonne Leadership Computing Facility18

Bootstrap: docker  
From: centos  
 
%setup  
 mkdir ${SINGULARITY_ROOTFS}/myapp
 
%files
 /host/path/to/myapp/pi.c /myapp/
 /host/path/to/myapp/build.sh /myapp/

%post
 yum update -y
 yum groupinstall -y "Development Tools"
 yum install -y gcc
 yum install -y gcc-c++
 yum install -y wget
 cd /myapp
 ./build.sh

%runscript
 /myapp/pi

#!/bin/bash
wget http://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz
tar xf mpich-3.2.1.tar.gz
cd mpich-3.2.1
./configure --prefix=$PWD/install --disable-wrapper-rpath
make -j 4 install
export PATH=$PATH:$PWD/install/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD/install/lib
cd ..
mpicc -o pi -fPIC pi.c

Argonne Leadership Computing Facility19

#!/bin/bash
wget http://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz
tar xf mpich-3.2.1.tar.gz
cd mpich-3.2.1
./configure --prefix=$PWD/install --disable-wrapper-rpath
make -j 4 install
export PATH=$PATH:$PWD/install/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD/install/lib
cd ..
mpicc -o pi -fPIC pi.c

• Notice manual installation of MPICH into container.
• The configure command disables the setting of RPATH during linking

of the shared MPI libraries.
• After installation of MPICH, PATH & LD_LIBRARY_PATH are set to

include MPICH
• Then pi is built
• IMPORTANT: ensure it dynamically (not statically) links against

MPICH

Argonne Leadership Computing Facility

Actual Build Command

20

> sudo singularity build myapp.img SingularityFile

• Copying container to Theta (my image was 225MB)
• Run the following

Running Singularity Container on Theta

> qsub submit.sh

Argonne Leadership Computing Facility

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Running Singularity Container on Theta

21

Standard Cobalt parameters

Argonne Leadership Computing Facility

• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 1
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Running Singularity Container on Theta

22

Swap module for app

Argonne Leadership Computing Facility

Running Singularity Container on Theta
• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh

23

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 1
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Module changes updated CRAY_LD_LIBRARY_PATH,
append it to local LD_LIBRARY_PATH
Also need to add addition library path.

Argonne Leadership Computing Facility

Running Singularity Container on Theta
• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh

24

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 1
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Run application inside singularity, aprun handles the MPI

Argonne Leadership Computing Facility

Running Singularity Container on Theta
• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh

25

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 1
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

-B /opt:/opt:ro causes Singularity to mount the host
‘/opt’ inside the container at ‘/opt’ in read-only (ro) mode.
This allows the use of cray libraries that are needed to
take advantage of Theta’s unique hardware.

Argonne Leadership Computing Facility

Six Easy Steps!
1.Install Singularity on machine with ‘sudo’ access
2.Create SingularityFile recipe
3.Run Build command with ‘sudo’
4.Copy to Theta
5.Create Cobalt submission script
6.‘qsub’ script

26

Container
pi

MPICH

Built on personal machine Container
pi

MPICH

Cray MPICH

Run on Theta

Argonne Leadership Computing Facility

Workflow Option #2: Cray Container
• We have a second way to build containers on Theta
• Created container with entire Theta Cray Environment

• 6GB image
• Can reach out to Derek Jensen if you would like to use

it
• Can not be made publicly because Cray software is

proprietary.
• Otherwise, the workflow is similar:

• Copy image to personal machine
• Create Singularity recipe to copy application into new

container and build it against cray environment
• Build container
• Copy to Theta
• Create Cobalt submission script
• Submit Job

27

Argonne Leadership Computing Facility

Workflow Option #2

28

Bootstrap: localimage
From: ./cray_base.simg

%files
 ./pi/

%labels
 Version pe_17.11-8-4

%environment
 MODULEPATH=/opt/cray/pe/perftools/6.5.2/modulefiles:/opt/cray/pe/craype/2.5.13/modulefiles:/opt/cray/pe/
modulefiles:/opt/cray/modulefiles:/opt/modulefiles:/opt/cray/pe/craype/default/modulefiles/:/opt/cray/ari/
modulefiles/:/opt/cray/ari/modulefiles

%post
 bash
 source /opt/cray/pe/modules/default/init/bash
 export MODULEPATH=$MODULEPATH:/opt/cray/pe/craype/default/modulefiles/:/opt/cray/ari/modulefiles/
 module load PrgEnv-cray
 module load craype-network-aries
 module load craype-mic-knl
 module list
 cd pi
 make

%runscript
/pi/pi

No need to install
p a c k a g e s , j u s t
module load them

Argonne Leadership Computing Facility

Summary
• Currently recommending one of

two workflows:
• Build Singularity Container on

your own machine, using
generic base images, import to
Theta

• Build Singularity Container
b a s e d o n t h e t h e C r a y
Container , import to Theta

• When Singularity bug is fix,
could also build Docker image on
y o u r o w n m a c h i n e a n d d o
‘singularity build’ directly on
Theta.

29

